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Polynomial Transfer Lot Sizing Techniques for

Batch Processing on Consecutive Machines

Abstract

Using transfer lots, we can overlap the processing of a batch on several consecutive

machines, and thus reduce the makespan considerably. This in turn promotes work-in-

process reduction. In this paper we investigate the transfer lots sizing problem for a given

batch size under two operating procedures. Our objective is to minimize the makespan

subject to a transferring budget. An important part of the solution involves partitioning the

problem to subsets of machines without losing optimality. For each part (subset), the first

and the last machines operate continuously while intermediate machines may idle intermit-

tently. The first operating procedure we consider calls for the lots to be identical across

all machines in each subset. The second operating procedure allows sub-lots for some of

the machines or for some of the lots. Though more elaborate, the second operating

procedure yields demonstrably superior results. The techniques provide satisficing feasible

solutions, which can also serve as efficient bounds for an exact branch and bound integer

linear programming model.



1. Introduction

In recent years the Japanese have achieved monumental industrial success by implementing the just-in-

time (JIT) production system on a nationwide scale [9; 4, pp. 736-769]. A basic tenet of JIT is that large

batches are contra-productive in more than one way. For instance, they cause excessive work-in-process

(WIP), excessive lead-time, and reduced flexibility. Large batches also compromise quality, because by

the time a defect is detected it is too late to do anything about it. Therefore, JIT calls for small batches,

ideally of one unit each.

Other important elements of JIT--beyond the scope of this paper--are total quality management,

workers' participation (Quality Circles), and striving for constant improvement. Our main concern here

is with aspects of materials flow.

Also known as The Toyota Method, JIT is designed primarily for the repetitive manufacturing

environment. It is a pull system, that is, usage downstream authorizes fabrication upstream. Assembly

lines, often found in the repetitive manufacturing environment, are conducive to moving parts one-by-

one, as urged by JIT. Parts required for assembly or fabrication are fed to the right stations in small

containers. The units in each container usually make up a production batch. To avoid disruptions,

buffers comprising a small number of containers are allowed in front of all stations. To avoid excessive

WIP, strict limits on the number of containers in each buffer are observed. Part of JIT is a continuous

effort to reduce these but,..rs, and still maintain smooth output.

In the mass production environment there are few potential setups for each machine (we use the

term machine as a generic for any station where the products have to be processed). To make small

batches possible, these setups have to be vigorously streamlined. Reducing setups that used to take

several hours to less than 10 minutes is a must under JIT. For an illuminating text on this issue and its

impact on the evolution of JIT, see Shingo [16].

In contrast, for medium volume production, and even more so in custom job shops, a large variety

of products are produced. Therefore, the number of potential setups increases, and it becomes

progressively uneconomical to reduce all of them. Under such circumstances, specifying large batches

may be necessary.

Can we capture the major advantages of JIT--such as reducing the lead-time and the WIP

inventory--without setting the machinery up more than once per batch, while still specifying sizable

batches? Goldratt, the developer of OPT (Optimized Production Technology) [7; 12, pp. 692-715; 101,

answered this question in the affirmative. Although OPT does not live up to its name, it is a

• . ., , i I I-1-



sophisticated production control system that successfully applies many JIT ideas to batch production.

It is possible to adopt the OPT philosophy, also known as synchronized manufacturing [4, pp. 790-

839], without using any computerized system. Nevertheless, many perceive OPT as a competitor of MRP

(I and II) [13; 12, pp. 655-658]. Our stance in this paper, following Vollman [20], is that OPT is a

potential enhancement to MRP. There are four key features in OPT that most MRP packages do not

support [10; 20]: ti) concentrating on bottleneck resources; (ii) scheduling activities on bottlenecks (and

downstream from bottlenecks) forward instead of backwards, thus utilizing them fully; (iii) specifying WIP

buffers (only) in strategic locations (for example, in front of bottlenecks); and, (iv) allowing transfer lots

to be smaller than the batches they belong to, thus overlapping the processing on sequential machines.

It is the transfer lots scheme that yields the major lead-time and WIP reductions that OPT

achieves. According to a broad interpretation of the OPT principles, these lots need not necessarily be

of equal size. Judging by the output of OPT, however, it seems that they do use transfer lots of constant

size [10]. (In this paper we allow the lots to vary.)

Although our main concern here is with (iv) and not with (i) through (iii), we note that the

literature on scheduling is oriented to forward-scheduling, so it applies to scheduling bottlenecks [e.g.,

3; 5]. Also note that linear programming can be used not only to identify bottlenecks (i.e., binding

constraints), but also to optimize the product-mix. Ronen [14] gives an analytic model for (iii), based on

the newsboy model. Ronen and Starr [15] discuss the relationship between OPT and well-known

optimization methods.

Some work has also been published in the realm of (iv). Recent examples are Graves and

Kostreva [8], and Truscott [18; 19]. The interested reader may find references to earlier efforts there.

The assumptions in [8] are: (i) constant demand, and (ii) equal production rates for all machines. The

model in [8] is developed for two machines. It optimizes the number of lots under the constraint that

they should be strictly equal and integral. If more than two machines are involved, the authors apply

their model on a pair-by-pair basis. [19] is based on [18], and does not make the constant production-

rate assumption. Several stages are investigated under a restriction that once a batch starts on a machine,

it is run continuously to completion. Transfers are limited to multiples of equal-sized sub-batches.

Limitations on the transportation capacity are also taken into account. [18] and [19] are oriented towards

implementation and dwell less on theoretical issues.

Trietsch [17] obtains optimal lots for one batch on two machines. The assumptions are that (i)

the units can be transferred one-by-one or in any combination, up to and including the whole batch; (ii)

the batch size is given; and (iii) the number of transfers is either constrained by a budget or by a
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limitation on the transportation resources (e.g., there are j vehicles available for the transfers, so lot j + 1

cannot be moved until the first vehicle returns). The solution is then extended to several batches that

have to be processed on the same two machines in the same order. Finally, a fast heuristic is introduced

to extend the model to several machines on a pair-by-pair basis (similarly to [8; 18; 19]). In the latter

case, transferring a lot incurs a cost that may be different for different machines, and there is a budget

constraint on the total transferring expenditure. The number and composition of lots may change for

each machine, to utilize the budget better.

Let us look at a simple example: we have to process 250 widgets on 4 machines. Machines 1, 2,

3 and 4 take 1, 2, 1 and 3 minutes per widget, respectively. Without splitting the batch to lots, the make-

span is 1750 minutes. Suppose now that the budget allows two transfer lots from each machine. If we

stipulate equal lots and require each machine to process all the widgets continuously (as in [8], but note

that the production rate is not equal), the makespan will be 1375 minutes, a reduction of 21.4%

(Figure 1).

Insert Figure 1 about here

By allowing intermittent idling in Machine 3 (as OPT does), while still specifying equal transfer lots (as

OPT probably does), we can reduce the makespan further to 1250, a total reduction of 28.6% (Figure 2).'

Insert Figure 2 about here

Instead of allowing intermittent idling, if we allow the lot sizes to vary for each machine, as in [17), we

can reduce the makespan to 1230, a total reduction of 29.7% (Figure 3). (See Section 6 for

computational details of this and the following illustrations.)

Insert Figure 3 about here

In this paper we generalize the results of [17] for one batch and several consecutive machines by

allowing intermittent idling. As in [17], we also allow varying lot sizes. In the present example this can

further reduce the makespan to 1155, a total reduction of 34% (Figure 4).

Insert Figure 4 about here

A crucial part of the solution involves schemes designed to partition the problem without losing

optimality. For each part (subset), we constrain the first and the last machines to operate continuously
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(See Sectiin 2 for a formal definition of partitions). For instance, Machine 2 in Figure 4 is the last

machine of the subset {1, 2), and the first machine of the subset {2, 3, 4}. The first opel ig procedure

we consider calls for the lots to maintain their composition across all machines in each subset, but allows

different lots across subsets, as in Figures 3 and 4. The second operating procedure allows the use of

sub-lots. That is, we distinguish between parent lots that remain intact across all machines in each subset

as before, and sub-lots that make up the parent lots. Figure 5(b) illustrates such a case, where the first

parent lot is one unit, and the second parent lot includes four units. On Machine 1, the second parent

lot includes two sub-lots; Machine 2 recombines them to a single lot.

Insert Figure 5 about here

Given a large enough budget, the first procedure can always achieve any feasible makespan. If

necessary, we can do that by transferring the units one-by-one. The second procedure, however, may

achieve the same makespan with a smaller budget than the first, and in this sense it is superior.

This paper develops fast satificing solution algorithms for minimizing the makespan under a

transferring budget. The algorithms are easy to program and fast; their worst case complexity is

polynomial. They yield feasible integral solutions, and are intended to be implemented in new or existing

MRP systems. The algorithms do not require the use of any external mathematical programming

packages.

It is also possible to find the minimal makespan by integer linear programming (ILP). When

solving by ILP, the satisficing solutions can serve as efficient upper bounds. An ILP model is presented

in the Appendix.

Following presentation of an early version of this paper in ORSA/TIMS St. Louis (October 1987),

this author became aware that Baker was independently developing a similar model [1]. Baker restricts

the lots to retain their composition across all machines (in contrast to retaining their compositions in each

subset only here). Ile uL cs for two ma.hiines and scveral lots; and for three machines and two lots. His

model approximates the solution by relaxing the integrality constraints on the lot sizes. The solution is

by a set of rules inspired by a linear programming (LP) formulation. (The same formulation can serve

to solve for several machines and several lots).

Baker and Pyke [2] extend the results of [1] to several machines and two transfer lots, under the

same assumptions. The solution is achieved by minimizing the maximal path in a network. [2]'s result

for the first example would be lots of 107.143 and 142.857. The makespan is 1178.571, or 23.571 more

than in Figure 4 (24 when integrality constraints are introduced).
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The rest of the paper includes 11 sections. Section 2 introduces the formal problem. Sections 3

through 5 deal with the first operating procedure: Section 3 examines a basic model for the first operating

procedure, under the assumption that all intermediary machines can handle the loads assigned to them

without requiring a partition of the problem; Section 4 investigates when and how to partition the

problem; and Section 5 finds the minimal number of lots necessary to achieve the minimal makespan.

Section 6 gives some simple examples. Section 7 introduces an exponential model with sub-lots, and

Section 8 develops polynomial heuristics for the same purpose. Sections 9 and 10 take care formally of

the issues of setups and integrality respectively. Section 11 introduces modifications that may be required

for applying the model in practice. Finally, Section 12 concludes the paper with a brief list of related

research questions.

2. The Formal Problem

[P] A batch of m items has to be processed sequentially on n machines, M1, M2, ..., Mn . Each item

requires Ti time units of processing on Mi; for all i. Prior to processing the first unit, Mi requires a setup

time of SUi; for all i. Transferring a lot of any size (up to and including m items) from Mi to Mi + I costs

Ci, and takes TTi time units; i = 1, 2, ..., n-1. It is required to minimize the makespan subject to a

budget constraint on the total transferring expenditure, B.

Definition: The symmetric problem is obtained from [P] by reversing the order of the machines. In this

paper we use the term symmetry to refer to the relationship between [P] and the symmetric problem. m

Setups in [P] become tear-downs in the symunetric problem; otherwise, the symmetry is perfect.

The symmetric problem has the same minimal makespan as [P], and can be solved by the same lots--in

reversed order. Symmetry is instrumental in proving most of the results below, starting with the next

theorem:

Theorem 1: Any feasible makespan can be realized in such a manner that both M and Mn will process

the whole batch continuously, although intermediary machines may have to idle intermittently.

Proof." Trivial for M1, and by symmetry for M.. son

Borrowing PERT/CPM terminology, the theorem simply suggests adopting "early start" on M1 and

"late start" on Mn .

An item for our purpose may actually be a set of several units, say a dozen, if the policy is to
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produce and transfer in dozens. For convenience, assume that at time 0 all the machines are free, but

not yet set up for the batch. This assumption is not restrictive: if M i is busy at time 0, say until time t,

simply add t to SU. Similarly to [19], we also assume that transporting the lots is done independently

of operating the machines. That is, the machines can continue working while the lots are being

transferred. This assumption is appropriate in environments where dedicated resources are assigned to

transferring items between stations. It is also appropriate if the transfer time, IT, is negligible. In

addition, it may be possible for the operators of machines that idle between lots to handle the transfers.

Other assumptior.- dbout this issue exist in the literature; e.g., see [6].

We use the budget constraint as an approximate way to allocate transportation resources to the

various machines. In an environment where many such transfers are called for, and transportation is

nandled by a central department, this is equivalent to treating the transportation department as a profit

center that sells transportation services to the jobs.

[17] includes an analytic model where a prespecified number of vehicles are available. The

solution specifies lots that are large enough to make it possible for the vehicles to return in time for the

next transfer. This solution can be easily implemented for adjacent pairs of machines in the present

problem. Nevertheless, it is difficult to generalize this solution when the same vehicle can serve more

than one pair.

The major effect of TIi on the makespan is increasing it by a constant, namely MIIi. This is

true since we do not specify that the same vehicle has to handle all the transfers. Therefore, there is no

need to wait for a vehicle to return from its former transfer before dispatching the current lot.

In addition, ITi may influence the issue of whether machines downstream can be set up in time

to process the first item that reaches them. (If they don't, a binding constraint is introduced.) Until

Section 9 we assume SUi = 0; for all i; therefore, for determining the optimal lots, we can also assume

"' i = 0; for all i.

What is the potential for makespan reduction here? The minimal makespan can always be

realized by transferring the items one-by-one. Therefore, the minimal makespan is the processing time

on the slowest machine plus the processing time of one item on all the others. Now subtract this from

mXTi to obtain the maximal makespan reduction (MMR):

MMR = (m - I)(ZTi - Max{Ti}). (1)

In the example illustrated in Figures 1 through 4, the MMR is (250 - 1)(1 + 2 + 1 + 3 - 3) = 996.

Therefore, the reduction in Figure 1, 375, is 37.7% of the MMR. Similarly, in Figures 2 through 4 the
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reductions are 50.2%, 52.2% and 59.7% of the MMR respectively. The reduction in the example

illustrated in Figure 5(b) is 100% of its MMR.

Similarly to [18], our stance in this paper is that as long as the makespan is minimized it is

preferable to use as few transfers as possible. In this spirit we will show that O(log m) transfer lots will

often suffice to achieve the maximal makespan reduction even if the budget is not binding.

We conclude this section with a definition of partitions.

Definition: A set of machines that are required to work continuously is called a partition set, or simply

a partition. We stipulate that a partition set must include M, and Mn (as per Theorem 1). A partition

can be read as a list of machines, or as a list of pairs. For instance, if Mi and M are adjacent to each

other in a partition we say the partition includes the pair (i, j). For convenience, we list a partition by

only listing the indices of the machines in it. When a partition includes r machines in addition to M1 and

Mn , we may list it as {p(o)-=1, p(l), p(2), ..., p(r), p(r+ 1)=n}, or {P(S)}s=0,r+ 1. 1

3. A Preliminary Model

In this section we start treating a relaxed problem, where fractional items can be transferred. The relaxed

problem is solved by the relaxed solution, as opposed to the integral problem/solution. To avoid an

excessive gap between the relaxed solution and the integral one, we stipulate that in a relaxed solution

all lots should be > 1. This restriction is also instrumental for demonstrating that the number of lots

required to achieve the maximal possible makespan reduction is often O(log m). We refer to instances

where lots are allowed to be < 1 as super-relaxed.

Using Theorem 1, we specify that M1 and Mn should operate continuously, while the intermediate

machines may idle between lots. We use our first operating procedure, i.e., the lots retain their composi-

tion across all machines unless a partition is involved. We denote the size of lot j by Li; j = 1,...,k; we

may also use Lj informally as the name of lot j. We denote the cumulative sum of the first j lots by S.;

e.g., S1 = L1, and Sk = m. Under partition, L. may be different for each subset, so formally we should

use a double index to identify L. and S.. Nevertheless, it is possible to use the simpler notation without

causing confusion. Our formal problem is now:

[Pk] Solve [P] under the following assumptions: (i) TT i = SUi = 0, for all i; (ii) the lots retain their

composition across all machines in each subset; (iii) fractional items may be transferred, but L. > 1; for

all j. *
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Definition: A solution is called well-behaved if (i) M1 and Mn operate continuously as per Theorem 1;

and (ii) Mi (i = 2, ..., n-i) can process each lot as soon as i. becomes available from Mi_1 (i.e., lots are

neither delayed at Mi., nor queued at Mi). If a lot can reach a machine before the machine is ready for

it, we say there is a conflict. t

Figures 3 and 4 illustrate well-behaved solutions. Figures 1 and 2 illustrate conflicts; e.g., in both

cases the second lot from M1 can reach M2 at time 250, but M2 is not ready for it until time 375.

It turns out that if fractional items may be transferred, the optimal solution tends to be well-

behaved. The only exception may occur due to the restriction L. > 1, which constitutes an integrality

constraint when it is binding. Thus, the optimal super-relaxed solution is well-behaved.

This is true because if conflicts exist, lots which have to wait could have been increased without

increasing the makespan. Since the sum of all the lots is constant (m), some preceding lot could have

been decreased, thus feeding M. sooner, and reducing the makespan. This argument fails if by reducing

the preceding lot we violate the constraint L. > 1 for it.

We also assume in this section that partition will be neither specified nor required; i.e., there exists

a well-behaved solution that can be found without specifying any partition. Without partition, under our

operating procedure the maximal number of transfers allowed by the budget is k = INT(B/zCi). To

obtain a well-behaved solution we must have

LL+(TI+T2+...+Tn. ) = W(T 2+T 3 +...+Tn) ;j = 1,2,...,k-1. (2)

That is, the time it takes to process Lj + 1 on the first n-1 machines should equal the time it takes to

process L. on the last n-1 machines. Thus L. +*ill reach Mn exactly when it is ready for it, as it should

in a well-behaved solution. Figure 6 illustrates this point: L1 = 100 items starts processing on M2 at time

100 and finishes on M4 at time 700, a total of 100(1+2+3) = 600 time units; 12 = 150 units starts

processing on MI at time 100 also, and finishes on M3 at time 700--just when M4 can start processing

it--also a total of 150(1+ 1 +2) = 600 time units.

Insert Figure 6 about here

Define

+ +... + T/( + Ti + I +...+T )Oij = (Ti+l + Ti+2 +'+T)i j Ti +"+T-)'

and let Q = Qn ; then the set (3) replaces the set (2)

L. = L. IQ = L; Q j 'I  for all j > 2. (3)
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In addition we have

L1 + L_2 +--+ Lk -(4)

In order to satisfy (4), we use the familiar geometric progression to obtain

m(1 -Q)/0I-O k  Q I

L { m/k Q =1. (5)

Along with (3), this suffices to specify all the lots. To continue, let us investigate the conditions under

which (3) and (5) yield a well-behaved solution. The question is whether there will be conflicts at the

intermediary machines. Checking the following n - 2 feasibility conditions gives the answer.

Ql,n > Q ,p ; 2 < p < n-1. (6)

The conditions are equivalent to comparing the lot sizes obtained in the solution to those obtained

by stipulating that M will work continuously, given L1. Under this stipulation (3) determines L2 , L-3,

etc., but with Q = Ql,p instead of Q = Ql,n" As long as the lots are not smaller than those required

by Mp to operate continuously, they cannot reach M before it is ready for them. Note that the

conditions are invariant under the number of lots, the size of the first lot, and m. In the example

illustrated in Figure 6, Q1,4 
= Q1,3 = 1.5. That is, one of the feasibility conditions is satisfied as an

equality; therefore M3 operates continuously even though no partition is enforced.

If conflicts do occur in intermediary machines, we can specify that the machines involved shall

operate continuously, as do M, and M.. That is, we partition the problem (see Section 4).

Let [(i)] denote the numerical value obtained by applying (i). If [(5)] < 1 or [(5 )]Qk-i < 1, we

use the following procedure:

The Adiustment Procedure:

(a) Q 2. 1 AND [(5)] < 1:

1. Set L1 = S1 = 1, and let i = 1 (recall Si = IjXjiLj);

2. if Si < m, let L 1,,+ = LDQ (as per (3)), Si+1 = min{S i + L,,+1, m}, i = i + 1; proceed to the

next step;

3. if Si = in, set K = i, LK = m - SK.1 , and proceed to the next step; otherwise, return to the

former step.

4. iterating backwards from j = K, if L. < 1 increase L. to 1 by decreasing Lj. 1 ; upon encountering

j such that L. > 1, STOP.

am m N I- C )-



(b) Q < I AND [(5)]Qk-I < 1:

Apply Part (a) of the procedure to the symmetric problem. a

If Q > 1, the lots under (3) (except possibly the last one when L, [(5)]) are non-decreasing, so

if L1 = [(5)] L 1 all the lots are > 1, and there is no need for adjustment. A symmetric observation

holds if Q < 1 and L, = [(5)]Qk ' l > 1. Otherwise, it is easy to verify that the procedure ensures

L. > 1; for all j. Let * superscripts denote optimal values, then

Theorem 2: If the feasibility conditions are satisfied, [(5)] . 1 AND [(5 )]Qk. l > 1, then L1 = [(5)]; else,

if the feasibility conditions are satisfied, then The Adjustment Procedure yields an optimal solution. (See

Appendix for proof.) o aa

Let MS r denote the relaxed makespan, and MS* denote the optimal integral solution, then

MS - MSr = h* > 0 is the difference in makespan due to the integrality constraints. We conclude this

section by developing a simple upper bound for h*, still under the assumption that no partition is

involved, and that SUi = 0; for all i. Under partition, the bound will apply to each part separately. The

sum of the bounds of the parts will then be the bound we seek. To continue, let fi be the fractional part

of Si, and define

1-fi ; fi>0
ei= {

0 ; fi=0.

Theorem 3: h*< min{ Max( ei}2j= 'n-TJ' Max{fi)7_j 2,0T.}

< -j1,Tj - Max{T 1, Tn}.
1

Proof: We introduce two heuristics:

Heuristic 1: Round all the Si values up to the nearest integer, i.e., Si + ei. That is,

the new value for L, will be (Si + e1) - (Si., + ei. 1).

Heuristic 2: Truncate all the Si values down to the nearest integer, i.e., Si - fi.

See Appendix for proof that Heuristic 1 increases the makespan of the relaxed solution by

Max~ei}1j.1,,. Tj, Heuristic 2 by Max~fi}1.i2,JT and both yield feasible solutions. was

Users who are satisfied with approximate solutions can use one of these heuristics instead of

applying the results of Section 10.
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4. Partitioning the Problem

The simplest way to enforce the feasibility conditions (6), when some of them are violated, is to look for

the largest index p which maximizes Q1,p' and specify the partition (1, p, n}. This creates n - p - 1 new

feasibility conditions downstream from Mp, i.e.,

QpA >- Qpj ; p + 1 < j < n-i,

and more machines may have to be added to the partition set between p and n. In this section we

investigate this and other partitions of the problem.

Definition: A pair (i, j) is called feasible if Qij > Qi'p; for all i . p < j. That is, Mi can feed M. as

per (3) and (5), with both of them operating continuously. a

Note that adjacent pairs, e.g., (i, i+ 1), are always feasible.

Deflnition: A partition is called feasible if all its pairs are feasible.

Specifying any feasible partition and using (3) and (5) for each part yields a well-behaved solution.

Definition: The partition implied by the feasibility conditions is called the minimal partition. That is,

if {p(s)},=0O,+1 denotes the minimal partition, then

Qp(s),p(s+l) = Maxj>){Qp(s)j}; for all 0 < s < r, and p(s+ 1) is the largest index j that maximizes

Qp(s)j" We refer to the minimal partition as MINPARTIT, and note that it is feasible by construction. a

Definition: The (feasible) partition which includes all the machines is the maximal partition, denoted

by MAXPARTIT. M

Definition: The medium partition, is the feasible partition with the maximal number of machines in it,

such that given a large enough budget it will be possible to realize MMR, as per (1). We refer to it as

MEDPARTIT. M

It may happen that specifying MEDPARTIT will cause the makespan to increase relative to

MINPARTIT. The definition merely says that given a large enough budget MMR can be achieved. The

first example in Section 6 illustrates this point.

MAXPARTIT contains all other partitions, feasible or infeasible. MINPARTIT, as the name suggests,

is contained in any feasible partition (see Theorem 6). And, any feasible partition properly contained in

MEDPARTIT enables MMR. We show how to construct MEDPARTIT and substantiate these claims below.

To continue our investigation of partitions, we present a few theorems. The proofs are deferred

to the Appendix. Theorem 4 is the motivation for the definition of MEDPARTIT. It indicates that
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partitions may limit the maximal possible gain. This is not surprising, since they impose additional

constraints on the problem. Before stating the theorem we define MMRij as the maximal makespan

reduction for pair (i, j). As in (1), we obtain
MMRij = (m - 1)(4.jj s - Max{Ts},j ) .  (7)

Theorem 4: For any partition {p(o)=1, p(1), p(2), ..., p(r), p(r+l)=n} (feasible or not),

MMR1 ,n a 7.,XIMR(i),p(i+l). Mon

It is easy to construct examples where the inequality is strict (see Figure 7). We also want to show

that the minimal partition does not imply any potential losses in MMR. Thus, for the minimal partition

Theorem 4 is satisfied as an equality. We state this result below as Theorem 5. But first, we present a

lemma.

Insert Figure 7 about here

Lemma l: Let Mi, Mp and M. be any set of three machines such that i < p < jandT " Ma,(Ti, T.}

then (i, j) is an infeasible pair. mu.

A direct corollary of Lemma 1 is that at least one of the slowest machines must belong to any

feasible partition, including MINPARTIT and MEDPARTIT.

Theorem 5: Let MINPARTIT = {p(o)= 1, p(1), p(2), ..., p(r), p(r+ 1)=n}, then

MMR1,n = pi=0,rMMRp(i),p(i+ 1)" 0,0

Theorem 6: Let PARTIT be any feasible partition which is not identical to MINPARTIT, then MINPARTIT must

be properly contained in PARTIT. u a 0

We also need another lemma, which specifies sufficient (but not necessary) conditions for a pair

to be feasible.

Lemma 2: Let (i, j) be a pair such that Tk < min{Ti, T.} ; for all i < k < j, then (i, j) is a feasible pair.

U..

We are now ready to identify MEDPARTIT. The procedure is based on the results above, and

observation of the proof of Theorem 4 (see Appendix). We are looking for the largest set of indices, {s},

such that (i) Ts is monotone non-decreasing for any s which is smaller than the largest index of a slowest

machine; and (ii) Ts is monotone non-increasing for any s which is larger than the smallest index of a

slowest machine.
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In more detail, by Theorem 5 we can start with the minimal partition, and add machines between

its pairs where possible. It is enough to concentrate on one pair at a time, say (p(s), p(s+ 1)). There are

up to three types of pairs in MINPARTIT: (i) pairs where TP(S) < Tp(s+l); (ii) pairs where

Tp(S) = Tp(s+1)' which can only happen if both of these values are maxima; and (iii) pairs where

TP(S) > Tp(s +). If we have a pair of the first or second type, we look for the smallest index i such that

p(s) < i < p(s+ 1) and Ti > Tp(s), and include it in MEDPARTiT. By Lemma 2, (p(s), i) is a feasible pair.

Ti < Tp(s + 1) (otherwise, by Lemma 1, the pair (p(s), p(s +1)) would not be feasible, and it must be

feasible because it belongs to MINPARTIT), SO (i, p(s + 1)) is also a pair of the first or second type (though

not necessarily feasible). Thus we can repeat the procedure iteratively for the pair (i, p(s + 1)), where i

takes the place of p(s) above. When no such i exists, we move to the next pair of MINPARTIT. Pairs of

the third type are treated symmetrically to pairs of the first type.

Any feasible partition contained in MEDPARTIT also has the same structure, i.e., (i) Ts is monotone

non-decreasing for any s which is smaller than the largest index of a slowest machine; and (ii) Ts is

monotone non-increasing for any s which is larger than the smallest index of a slowest machine.

Therefore, such partitions also enable MMR.

Makespan Reduction as a Function of the Number of Transfers

Let (i, j) be a feasible pair, specified as part of a partition, and let MRij(k) denote the marginal

makespan reduction associated with allowing k transfer lots relative to k-1 lots for the subset Mi,...,M j.

Let Kij be the number of lots required to achieve MMRij (as indicated by running The Adjustment

Procedure for the subset, or see (11) and (12) below), then

MRij(1) = 0 (this transfer is essential),

m(l,.ij-Ts)Qijk'l(l"Qij)2/[(l"Qijk'l)(l"Qijk)] -Qij 1, 1 < k < Kij

MRiJik) = { (8)
m(2.ij-Ts)/(k(k'l)) ;QiJ =  1, 1 < k < Ki~j,

MRij(Ki,j) = MMRij - MRi(Kij - 1). (9)

(8) is derived from (A9) (see Appendix). Next, we have a convexity property:

Theorem 7: The series {MRiJ(k)}k2,3....m is monotone decreasing. mom

Furthermore, the first extra transfer can yield at least half of the maximal makespan reduction,

MMRij, i.e.,
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Theorem 8: MRi(2) > MMRij/2. u••

In case of partition, Theorem 8 applies to each part separately, but not necessarily to the whole

set. For instance, in the example illustrated in Figure 7(a), where MAXPARTIT is specified, the total make-

span reduction is 18--less than half of MMR = 99. Nevertheless, it is easy to verify that under

MEDPARTIT or any feasible partition contained in it (e.g., MINPARTrI), Theorem 8 does apply to the whole

(Figure 4).

Identifying the Optimal Partition

Given a feasible partition (e.g., MINPARTIT, MEDPARTIT, or MAXPARTIT), Theorem 7 suggests allocating

the budget to the parts of the problem by a heuristic procedure, to which we refer as The Greedy

Heuristic. First, we list and sort all the MRi,(k)/..ij_1 Cs values. Then, we specify as many transfers

as possible from the top of the list. That is, we use transfers that yield the highest marginal gain per

dollar--as long as the budget allows. This also makes it possible to find the most economical budget, if

the budget is not the result of real technical constraints. To that end, we simply add transfers from the

top of the list as long as the extra expense is justified by the marginal contribution. If the heuristic

allocates the budget completely, the solution is optimal. Otherwise, it may happen that by giving up some

of the transfers indicated by the heuristic, larger makespan reductions may be obtained in other pairs.

This is the heuristic presented in [17] for MAXPARTIT. The main problem with The Greedy Heuristic is

that we need to know the partition in advance, or check all the possible candidate partitions (which would

lead to an algorithm exponential in n).

It is possible, however, to solve this problem to optimality by dynamic programming (DP). The

Appendix presents a DP algorithm that finds the optimal partition and allocation in O(n 3m2) or

O(n3mlog in), depending respectively on whether or not Qij is likely to be 1.

5. Achieving the Maximal Gain with the Minimal Number of Lots

Let MSiJ be the minimal makespan possible for a feasible pair (i, j) when k transfers are allowed. MSi j

is measured from the start of the batch on Mi to its finish on M.. Observe that we have to process the

first lot on the first j - i machines and then process the whole batch on M . This leads to the following

bound

MSij -L LI(Ti + Ti+ 1 +....+T.. 1 ) + mT (__. (Ti + Ti+ 1 +....+T..) + mTj). (10)

- 14 -



The second inequality arises because L1 L 1. By symmetry we also have

MSj .> LkCTi+I + T!+2 + .... +Tj) + mTj ( +(Ti1 + Ti +2 +.... +T ) + mT-).

Either or both of these inequalities can be strict, but under (3) and (5) they are both satisfied as

equalities. For that to happen, both Mi and M. have to operate continuously. Our objective in this
J

section is to find the minimal number of transfers required to minimize MSij. We denote this number

by Kij (corresponding to K in The Adjustment Procedure). This number may be slightly impacted by

the integrality constraints that we relaxed for the present, but it gives a good approximation for the

integral version as well. Our procedure for finding Kij is simple. First, if Qij > 1, then (3) leads to

increasing lots, and L1 is the smallest lot. Since L1 ?> 1, by specifying L1 = 1 and using (3) for the other

L values we obtain an increasing geometric series. (10) assures us that this policy will minimize the

makespan, since it will hold as an equality. How many members should the series have to exceed m for

the first time? The answer is:

Kij = SUPINT(log[(Qi j - 1)m + l]/logQij) ;Qij > 1, (11)

where SUPINT(x) = smallest integer Z x. Next, if Qij < 1, then by symmetry

Ki j = SUPINT(log[(l/Qi j - 1)m + 1]/log[1l/Qij]) ;Qij < 1. (12)

Finally if Qij = 1, then K j = m.

The procedure of calculating L. by (3) based on L 1 is similar to our approach in The

Adjustment Procedure. Note that as a result, we obtain

LK J = m - SK'j. <_. LIyL. 1 j.

The optimal solution is not necessarily unique here, since we have some degree of freedom in changing

the lots following L1 without violating (2). Nevertheless, the lots specified above are optimal. We say

this not only in the sense that the makespan is minimized but also in the sense that only necessary

transfers are specified. Similarly, if the bound is on the last lot instead of the first, we use the same

procedure, but backwards. Here we use (12) below instead of (3), starting with LlcK.

JL.(1/Q) ;3 <j <L Ki j

J m - 1x. 2 1cLL ; j 2.

By observation of (11) or (12), if Q 1, Kij is O(log m). This is obviously good news to

management. It also has a beneficial effect on the complexity of the procedures we employ.



6. Examples

To illustrate the first operating procedure, along with its shortcomings, let us look at some simple

examples. In Examples 1 and 2, with four machines each, we look for the minimal makespan with two

transfer lots.. Examples 3 and 4, with three machines each, illustrate the budget allocation and its effect

on the makespan.

Example 1: Let m = 250, T1 = T2 = 1, T3 = 2, T4 = 3, and assume the budget suffices for exactly two

transfer lots. (We ignore the issue of optimal budget allocation here.)

Solution (see Figure 6): Q1,4 
= (T4 + T3 + T2 )/(T 3 + T2 + T1 ) = (3 + 2 + 1)/(2 + 1 + 1) = 1.5,

Q1,3 = (T3 + T2 )/(T 2 + T) = (2 + 1)/(1 + 1) = 1.5 :!< 1.5, and Q1,2 = 1 . 1.5, = = > no partition

is required. That is, MINPARTIT = (1, 4}; MEDPAR.TIT = MAXPARTrr = {1, 2, 3, 4). Since Q1,3 = Q,4,

M3 will operate continuously under MINPARTIT, even though it is not specified explicitly in the partition.

Solving for L1 we obtain 100 units, and the total makespan is 1150. me

This example serves to illustrate an important point about MEDPARTIT: given a large enough budget,

MEDPARTIT enables the maximal possible gain; but if we restrict the budget, as implied in this example,

then partitioning at a machine which belongs to MEDPARTIT can increase the makespan. In this example,

there would be an increase of about 8 time units associated with adding M2 to the partition. We leave

the computational details to the interested readers.

Insert Figure 8 about here

Example 2: As before, but interchange the order of M2 and M3, i.e., T2 = 2 and T3 = 1. Here, if we

try to stick to the former solution (L1 = 100), there will be a conflict at M2 (see Figure 8), since M2 still

processes L1 when L-2 reaches it. Indeed, Q1,2 = 2 > 1.5 = Q1,4. The total makespan is 1200. By

specifying MINPARTIT--{ 1, 2, 4) in this example--we can reduce the makespan to 1155 (see Figure 4), most

of the way back to 1150. Note that this requires changing the size of L1 from 83 between M, and M2

to 107 downstream. Figure 3 illustrates the makespan for the same example under MAXPARTIT, again with

a variable size for L1. The additional delay is 75 units, or about 6%. (For this example, the integrality

constraints were satisfied by simple rounding, and therefore the makespan may be slightly off.) u

Example 3 (see Figure 7): Letm = 10, T1 = T3 = 10, T2 = 1, C1 = C2 = 1, andB = 20.

Solution Under First Operating Procedure: Each compound transfer costs C1 + C2 = 2, so we can have

up to 10 lots. Q = (1 + 10)/(10 + 1) = 1. = => L1 = 1, and we obtain 10 equal lots of one item each.
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Checking the feasibility conditions (6), 1 > 0.1, hence no conflicts will occur. The makespan is 111. m

Solution Subject to All Machines Operating Continuously: This is a forced partition, namely MAXPARTIT.

Applying (12) to pair (1, 2), we obtain SUPINT(log(10 - 1)10 + 1]/loglO) = SUPINT(log9l/loglO) =

2. The same numeric result applies to (2, 3), due to symmetry. Hence, the budget is not binding. By

(5) we obtain L1 for pair (1, 2) = 9/.99, but since this leads to L2 < 1, The Adjustment Procedure yields

L2 = 1, and L, = 9. For the second pair, by symmetry, L1 = 1, and L2 = 9. The total makespan is 192

(and not 191), since M2 is constrained to work continuously, and hence it cannot start until time 91. M2

feeds M3 for the first time at time 92. M3 , though it can start immediately, requires 100 time units. In

this example Theorem 4 is satisfied as a strict inequality. Indeed note that M2 does not belong to

MEDPARTIT. RE

Example 4: Letm = 5, T1 = T2 = 1, T3 = 5, C1 = 1, C2 = 10, andB = 23.

Solution Under First Operating Procedure (see Figure 5[a]): Q = (1 + 5)/(1 + 1) = 3. C1 + C2 = 11,

so the budget suffices for two composite transfers, leaving $1 unused. By (5) L1 = 1.25, and the

completion time is 27.5. Now, if we consider the integrality constraints, we are indifferent between

L 1 = 1 or L1 = 2. In the former case the second lot of 4 items will get to M3 at time 9, and it will still

require 5.4 = 20 time units to finish the batch. In the latter case, M3 receives the first lot at time 4, and

finishes at time 29 again. n a

Solution Subiect to the Maximal Partition: This is a forced partition again, but note that this time

MEDPARTIT = MAXPARTIT. Qi,2 = 1, so we can use up to 5 lots there. Applying (11) to pair (2, 3), we

obtain SUPINT(log(5 - 1)5 + 1]/log5) = SUPINT(log2I/log5) = 2. That is, there is room for up to one

extra transfer there. Here our budget is binding. By (8) we get MR 2 ,3 (2) = 4; MRI,2 (2) = 2.5;

MR 1,2(3) = 0.8333; MR 1,2(4) = 0.4167; MR 1 ,2(5) = 0.25. Dividing these values by the respective

transfer costs, the contribution per dollar of MR 2,3(2) is 0.4, while the other values remain unchanged.

Therefore, the greedy heuristic will specify three extra transfers between 1 and 2. Then, it will try to

introduce an extra transfer for (2, 3), but the remaining budget of $9 will be $1 short. In this example

an exact algorithm (such as the DP model) can yield the optimal allocation, namely, one extra transfer

for (2, 3) and two for (1, 2). The resulting makespan is 27.667. The best integral solution here yields

28. (Note 27.667 > 27.5 but 28 < 29. Since 27.667 > 27.5, the dynamic programming algorithm would

not specify a partition, even though with the integrality constraints it is better.) as

Qptimal Solution (See Figure 5[b]): Allocate $3 to three lots from M1, and $20 to two transfers from

M2 , thus utilizing the budget fully. Let M1 send the first item as the first lot, and then two lots of two
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items each. M2 will be able to send the first item to M3 at time 2, and start the next four items at time

3 (M2 will idle between 2 and 3). At time 7 M2 and M3 both finish their current load, and M2 sends

the four items to M3 "just in time." Thus MS1,3 = 27. an

The last solution happens to comply with the integrality constraints and achieves the maximal

makespan reduction as per (1). Therefore, it is the optimal solution. Note that this integral solution gives

a shorter makespan than the 27.5 we got before with the relaxation. It compares even more favorably

with the integral solution's 29. Thus, our first operating procedure leaves something to be desired.

Indeed it is intuitively clear that when the transfer costs and the potential marginal gain differ from stage

to stage, forcing the model to specify the same number of transfers across all stages may be wasteful.

This motivates our second operating procedure.

7. Introducing Sub-lots into the Solution

In this section we treat [Pk] without the constraints L. > 1; leaving them in would complicate the

presentation considerably. Thus, we look for the optimal super-relaxed solution. Section 10 develops

integral solutions for this section's operating procedure (as well as for the former operating procedure).

Examine the optimal solution of Example 4. At first, the lot size remains constant for all machines

(one unit). Then, two lots from M1 to M2 are combined to one lot from M2 to M3. Note that though

M2 has to idle after the first lot, it does so only after having dispatched all the items it processed. One

way to describe the optimal solution of Example 4 is to say that the batch is divided to two parent lots.

The first is processed on all machines "as is," while the second is further divided to two sub-lots on M1 .

Each machine processes each parent lot continuously. The intermediary machine idles between parent

lots. Note that the solution is well-behaved.

This leads us to an operating procedure where we retain the same parent lots across all machines,

but allow sub-lots within each parent lot. Machines can idle between parent lots, but not between sub-

lots. Since the number of sub-lots in parent lot i and parent lot j need not be equal. Therefore the

budget should not necessarily be allocated to the parent lots equally. Thus we are presented with a sub-

problem of allocating the budget to the parent lots. We need to solve the sub-problem before allocating

the sub-budget within the parent lot. Initially, we assume all intermediary machines idle between parent

lots. By Theorem 1 we know that Mi and Mn.do not have to idle. Later we will discuss partitions, and

thus take care of conflicts in intermediary machines.
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Assume for a while that we know how many parent lots there are, and to how many sub-lots each

parent lot is divided on each machine. We refer to this information as the grouping information. We

proceed to deduce the optimal lot (and sub-lot) sizes from the grouping information.

The size of parent lot i, still denoted by L, is constant across all the machines. The sub-lots may

be different for different machines, even if their number is the same. Observe that under our assumptions

each parent lot is processed as a batch under MAXPARTIT. When a parent lot is not divided to sub-lots

on some machine we may refer to it as a sub-lot of itself. Let:

0 Yij,k be the relative size of sub-lot j, emanating from Mk, and belonging to L1. (;Yij,k = 1.)

0 STi,k be the time the first sub-lot of L, starts processing on Mk.

Then, since M, and Mn operate continuously, the first sub-lot of L, starts processing on MI at

time

STi, = T;.,i.,ILp ,  (13)

and on Mn at time

STi,n = LI1-..lnlY1,l,kTk + T n p 7.Pi-Lp. (14)

Let L! denote a tentative value for ,, then to calculate all the L, and Yij,k values we start with

L1 = 1 and proceed recursively, as outlined below.

(1) At stage i, given L! and Ypj,k for p < i and all j, k, calculate Y for all j, k; if i go to (3);

else, set i = i + 1 and go to (2);

(2) Given Lt and Yp k for p < i and all j, k, calculate L! and return to (1)

(3) For i = 1 to K let L = mLi/.L p

The details of the calculations are deferred to the Appendix. By observing these details we can

see that unless there are conflicts between parent lots on intermediary machines we obtain well-behaved

solutions.

We still operate under three assumptions: (i) we have the grouping information; (ii) all

intermediary machines are allowed to idle intermittently; and, (iii) there are no conflicts at intermediary

machines. Given these assumptions, we have an efficient procedure to calculate all the lot and sub-lot

sizes. It is when lifting the assumptions that our method may become exponential.

For instance, to lift the first two assumptions we can generate all the possible groupings and

partitions which the budget allows. It is easy to see that this can be done in exponential time. We then

solve for each such grouping/partition as described above.
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As for conflicts at intermediary machines, we check for them by the following set of conditions:

STi,k > STi.lk + LITk ; k = 2,..., n-i, all i. (15)

Where we calculate the ST values recursively (using (13) for k = 2), i.e.,

STIk = STik 1 + L1Yi,l,k.iTk.l ; k = 2,..., n-l.

If the conditions hold, the solution is a valid candidate. Otherwise, that particular

grouping/partition is rejected. The best candidate solution is the method's final output.

8. Polynomial Heuristics with Sub-lots

In this section we introduce simple rules based on results from the former analysis, to obtain polynomial

heuristics.

For a while, let us assume that no partition is required. The technique we develop under this

assumption can then be applied to the separate parts of the problem, if we partition it later. Further-

more, it will indicate one possible "quick and dirty" method of partition.

Under this assumption, we have to allocate the budget to parent lots, and--within each parent lot-

-to the different machines. This gives us the grouping information. Given the grouping information,

Section 7 lists all the necessary calculations.

The basic rule we use for allocating the budget among the parent lots is to make the allocation

as equal as possible. To the extent it is not possible to allocate the budget evenly, we make the allocation

monotone non-decreasing, or monotone non-increasing. To choose between those two, we have the

following rule of thumb: if the first machine is faster than the last, choose the non-decreasing order;

otherwise, choose the non-increasing order. (This rule works well for Example 2. The rationale behind

it is that it allocates more to the larger parent lots.)

Allocating the budget evenly does not yet tell us how many parent lots we should use. Dividing

the budget by XCi will give us an upper bound for that purpose. Another plausible (heuristic) upper

bound may be obtained by using Kij, as per (11) or (12). Next we may check for lower numbers of

parent lots. We continue considering less and less parent lots until one of the following happens: (i) we

get down to a single parent lot; (ii) our results start to deteriorate instead of improving. Symmetrically,

we can start with one parent lot, and then increase the number.
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At this stage, it remains to allocate the budget within the parent lot. To do that we propose to

use the solution of the maximal partition procedure as applied to the parent lot (instead of to the whole

batch). Note that we do not really have to know m, or 1L, to use this solution. Hence we have enough

data to apply it. Also recall that the partition is known (i.e., MAXPARTIT), and The Greedy HeLtistic as

well as the DP solution can supply the necessary allocation.

Theoretically, by applying the maximal partition procedure we minimize the makespan of the

parent lot, s.t. no idling between sub-lots. In fact, what we wish to do is to maximize the size of the

particular parent lot, without exceeding the time frame allotted to it. That is, we wish to maximize the

throughput. Minimizing the makespan for a known number of items, however, is dual to maximizing the

throughput during a set period. Therefore, this solution is appropriate here.

Having made the allocation to parent lots, we now use (15) to determine whether there are

conflicts. If so, we can partition and solve the problem in the following way:

(i) take the machine which is most conflicted (that is, has conflicts for the largest percentage of time),

and add it to the partition set.

(ii) allocate the budget to the parts exactly as was the allocation to the machines belonging to each part

before. Then, solve the problem for each sub-problem separately.

Alternately, when we check a new partition we may simply scrap it if there are any conflicts In

particular, if conflicts occur when we try to solve without partition, this would imply that we must

partition the problem, one way or another. To do that, we can use some of the following ways:

0 Partition at machines which conflict while applying the heuristic. (These will probably be slow

machines.)

0 Try MINPARTIT or MEDPARTIT

0 If there are few machines, try all possible partitions.

To allocate the budget to the parts, we have two alternatives: (i) if we choose to determine the

partition by the first method, we can allocate the budget accordingly, as discussed above; (ii) in all cases,

including the former, we can also use dynamic programming similarly to the procedure above. Of course,

the latter will be more time-consuming.

Note that if we partition by dynamic programming, allocating the budget to the parts can be done

together with the partitioning. Otherwise, we start with a given partition, and optimize the allocation of

the budget to the parts. To do that observe that the savings in the various parts are additive, so a

knapsack DP algorithm can be used. For this purpose, we have to build table functions for each part
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showing how much can be saved within it for any given budget allocation. We do this by allocating the

budget as evenly as possible within each part. If we get conflicts within a part under a certain number

of parent lots, we look for a different number of parent lots.

The complexity of the heuristic depends on the choices we make. For instance, if we choose to

check out all the possible partitions, we have exponential complexity. All the other choices yield

polynomial complexities.

9. Dealing with Setups

(16), below, is a set of conditions which ensure that the setups cannot become critical. If (16) is violated

for some k, then SUk is potentially critical.

SUk Maxp{SUkp + jp,(T+T); all 2 < k .< n. (16)

For every potentially critical setup we have to check the solution for conflicts. If there are

conflicts, the setups involved are critical indeed. We now list several treatments we can specify if some

setups are critical.

The simplest solution is to delay the whole schedule by maxi{Di}, where Di is the amount by

which SUi conflicts with the original schedule. That is, the most critical setup determines the delay. If

we do this, however, it may become possible to specify less transfers upstream of the most critical setup,

and more setups downstream. This may recapture some of the delay within the same budget.

To minimize the makespan without a budget constraint, we can always partition the problem at

the most critical machine, and look for a solution which starts feeding it as soon as the setup is

completed. This may require further partition due to other setups.

Another approach is to increase L1 (or Yl,l,k or both) enough to ensure that L will not reach

the most critical machine before the setup is finished.

All the methods above are not guaranteed to produce the minimal makespan. To do that we have

to resort to the ILP model (see Appendix). The ILP model itself, however, can be approximated by an

LP model, thus yielding a solution with polynomial complexity. If we use an LP model, we can obtain

good integral solutions by the methods listed in Section 10.
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10. Obtaining Locally Optimal Integral Solutions

To complete the model we still need to adapt the solution of the relaxed problem to the integrality

constraints. We utilize two procedures: (i) The Feasibility Procedure, which starts with a given make-

span and produces a feasible integral solution with that makespan--if one exists; and (ii) The Optimizing

Procedure, which starts with the makespan of the relaxed problem and increases it sequentially until The

Feasibility Procedure indicates success. The increments by which The Optimizing Procedure increases

the makespan are designed to make sure that the minimal feasible makespan will never be exceeded.

The complexity of the combined procedures is polynomial, and they are fast in practice.

We assume that the partition of the best relaxed solution is enforced. Our purpose in this section

is to identify the locally optimal integral solution. That is, the optimal integral solution with the same

operating procedure and number of lots and sub-lots. Since we do not temper with the partition, we can

apply our procedures to each part separately. For convenience in presentation, we assume that the

solution is unpartitioned.

Let MS* denote the locally optimal integral solution (instead of the globally optimal integral

solution as above). Then MS* - MSr = h* > 0 is the difference in makespan due to the integrality

constraints. Our objective is to find h* and a feasible schedule which makes it possible to process the

batch within MSr + h*. We start with the first operating procedure, and later solve for the second one.

10.1 Solving for the first operating procedure

To specify the solution we need to introduce The Feasibility and the Optimizing Procedures as applicable

to the first operating procedure.

The Feasibility Procedure:

Input: Any non-negative value, h.

Output: Upon success, a feasible integral solution, with makespan MS = MSr + h,

Otherwise, indication that MS* > MSr + h.

Iterations: For i = 1 to k, let

Li = min{INT[(MS - Tnm + Si.l(Tn - TI) - 1j-i,n-1TI' - SU1 )/.,. 1 TJ], m - Si. 1}) (where So = 0);

Si = Si. + I.;

Fi = FRACTION[(MS - Tnm + Si. 1(Tn - T1 ) - ..TT.t' -SI ... Tj;

E i = I - Fi (Ei is required for The Optimizing Procedure);

Success indication: Sk = m.
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The procedure simply maximizes L subject to the constraint that the makespan should be MS.

Theorem 1, i.e., specifying that M1 and M. should operate continuously, serves to maximize L, here.

Note that Fi and Ei are similar to fi and ei in Theorem 3, but they are not identical.

The Optimizing Procedure:

1. Leth 0 =0,j = 1;

2. iteratively, call The Feasibility Procedure with hj.1 ; upon success, set

h= hj.1 and STOP;

otherwise, set hj = hj.1 + min{Ei}Xj. 1 .iTj; and start iteration j+ 1. u

The basic idea behind The Optimizing Procedure is that if The Feasibility Procedure does not

produce a feasible solution, there must exist some lot which should include at least one more item.

Therefore, we look for the smallest addition to h which will cause one lot (at least) to increase by one

item, and run The Feasibility Procedure again for the new h. We refer to the resulting values of h as

jump points. A tip to the wise may be in order here: when programming The Optimizing Procedure add

a small amount, say 10"6, to hJ before calling The Feasibility Procedure. Otherwise, the jump point may

be missed due to rounding errors.

The combined procedures' worst case complexity is polynomial. The proof is a direct extension

of Theorem 5 in [17]. The procedures were programmed for the two machines case, and the numerical

experience is that the optimum is usually achieved with less than m/3 iterations. The bound of Theorem

3 was usually at least twice that of the actual solution.

10.2 Solving for the second operating procedure

The complication here is that we have to adjust the sub-lots and the parent lots to be integral. A key

observation we use to resolve this issue is that processing a parent lot under this scheme is an instance

of processing a batch under MAXPARTIT. Therefore, if we know how many items are in a lot, we can

apply the solution of 10.1 to each pair separately. This will provide the locally optimal integral sub-lot

sizes.

We proceed to examine how many units can be included in L, for any given makespan. Let At i

measure the time interval between starting Li on M, and on Mn , then xi = INT(Ati/Yk..f.IYilkTk)

is an upper bound on the number of items that L, can comprise. The Yi,l,k values are obtained as per

Section 7. When we run The Extended Feasibility Procedure (below), it is possible to compute /At i for

each lot. Hence, we can simply try to fit xi units in Li, and if necessary decrease it to xi - 1, xi - 2, and
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so on. The largest feasible value is the one we specify. Finally, let MST(x) be the minimal makespan for

a batch of x units under MAXPARTrr with the same number of lots as the number of sub-lots in parent lot

i between the same machines, and we are ready to state the procedure.

The Extended Feasibility Procedure:

Input: Any non-negative value, h.

Output: Upon success, a feasible integral solution, with makespan MS = MSr + h,

Otherwise, indication that MS* > MSr + h.

Iterations: For i = 1 to k, let

a.t i = MS - Tum + Si.I(Tn - TI) - SU1;

L1 = max{INT(,ati/4.1..1Yi,l,kTk), m- Si-11;

REPEAT: if MS*(Li) > a. ti + 1,T u then I = Li - 1;

UNTIL: MS(L) < Jt i + t;

Si = Si. 1 + L1 (where So = 0);

Ei =MSi(Li + 1) - Lt i - LiTn (Ei is required for The Optimizing Procedure);

Success indication: Sk = m. a

The Extended Optimizing Procedure is almost identical to the preceding version. The only

difference is that when updating h we use h = hi. 1 + min{Ei}, i.e., we do not multiply min{Ei} by

Though slightly more complicated than the algorithm for the first operating procedure, the

algorithm here is still polynomial and tractable.

In fact, our method is actually too good in a sense, because in practice we'll need some time

buffers (see [14, 17]), to accommodate fluctuations in the processing rate etc. These buffers will probably

be large relative to the accuracy of the procedure. Therefore, it makes sense to let the increment in h

be "too large."

11. Modifications

So far we assumed that the cost of each transfer is a constant, regardless of the quantity transferred. We

did not treat the issue of work-in-process explicitely. That is, we tacitly assumed there is enough storage

space near each machine for any lot size. We did not consider resources that require the same time to

process any lot size--such as ovens. Finally, we assumed that the product is processed on a single linear
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sequence of machines. To adapt the model for implementation we may have to deal with some or all

of these issues. In this section we outline how to do this.

Suppose the real cost of a transfer from Mi is of the form ai + biL, where a and bi are positive

constants and L is the lot size. Than summing for all lots, our cost is aik + bim. bim is fixed for the

batch, and ai takes the place of our transferring cost, Ci . Therefore, all we have to do is reduce the

budget by m~bi, and our model still applies. Usually we can approximate the real transferring costs by

such a function, so our model is not restrictive here.

Next, let us discuss the WIP. There are two issues involved: (i) the money invested in this

inventory, and (ii) congestion in the plant. The money invested in WIP is only an issue if the raw

materials and purchased components for some of the items of the batch can be acquired during the

processing. If this is the case, we should consider using smaller batches. If we insist on large batches,

however, we can accommodate a restriction on the rate of investment in WIP by specifying a dummy

machine, M0 , in front of M1. A transfer from Mo will cost C0, reflecting the fixed transaction cost of

ordering/receiving the materials plus the cost of releasing them to production. If the speed assigned to

M0 is not less than that of the slowest machine, the makespan can still be minimized as before. This may

require a larger budget, however.

It is possible to use the model to choose the best speed for Mo so the total cost of WIP and

transferring will be minimized for any feasible makespan. Next, if we have the value of a savings of a

time unit in the makespan, we can minimize the total WIP, transferring, and makespan cost. This will

require using the model as input for a search procedure that will search for the optimal T0 . Note that

if To is set equal to Tp = Max{Ti}, then at least between Mo and Mp the model will call for equal

parent lots. The sub-lots are still likely to vary, however.

If we can sell the first items of the batch before finishing the processing, than it makes sense to

allow Mn to work intermittently too. We can do this by a symmetric dummy machine, Mn+i1 Again we

can optimize Tn +1 similarly to the case of T0 .

If the WIP is a problem due to congestion, the formal problem becomes tough mathematically.

We can handle it in practice by dividing the batch and the budget to (roughly) equal sub-batches, and

solving for each sub-batch by our modcl. Since the sub-batches are equal, then for every number of sub-

batches we have to solve the model once, and check the solution for congestion. As a rule, we should

divide the batch to the largest possible sub-batches which do not cause congestion.

Next we discuss special resources such as ovens, which take the same time to process a lot

regardless of its size. A convenient way to deal with these is to model them as transfers, rather than as

- 26 -



machines. This raises a sub-problem: make sure that the resource will be available for the next lot in

time (i.e., the lots must not be too small). The sub-problem can be solved by modifying a model

presented in [17, Section 5], where the number of vehicles is limited. Our special resource acts as such

a vehicle, connecting the two adjacent machines. 117]'s model can also serve if there are j such resources

in parallel, or if the resource has a limited capacity.

When assembling a batch of products, the assembly operation may be fed by more than one line

of machines. The problem is to coordinate these lines to feed the assembly on time. To solve this

problem we can model the assembly as the last machine (M.) for all the lines feeding it. This creates

an opportunity to optimize the transportation budget allocation to the sequences. If the objective function

is to minimize the project makespan, this can be done by The Greedy Heuristic. At each stage, only

transfers which decrease the makespan of the longest sequence are considered.

12. Conclusion

We developed fast solution techniques for the single job-several machines transfer lot sizing problem.

The techniques can Ne implemented in new or existing MRP packages. They are easy to program, and

do not require support by additional mathematical programming modules. We showed that by allowing

the lot sizes to vary, the number of necessary transfers tends to be O(log m), and that by allowing

intermediary machines to idle intermittently the makespan can be decreased considerably. We conclude

the paper with a partial list of open research questions (see [17] for other open questions).

0 Determine the complexity of the problem; i.e., find a solution in P or prove NP-completeness.

* Develop more heuristics, as long as no efficient polynomial solution is found. For instance, in the
second operating procedure we may allow intermittent idling within each parent lot, or allow sub-
parent lots. That is, use the first or the second operating procedure hiida the second operating
procedure.

0 Generalize the problem for several jobs in a flow shop environment (see [11 and [17] for
preliminary results).

* Investigate the implications for the Job Shop Scheduling Problem (not necessarily a flow shop);
combined heuristics.

* Relax the assumption that the production rates are deterministic and known exactly. This issue
includes the problem of obtaining the best estimators for the true rates of production to minimize
the expected makespan. (See [17] for some basic sensitivity analysis results which can be extended
to the present model.)
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0 Consider the case where several operations are required on the same machine, calling for
intermediary setups.

0 Introduce multidimensional budget constraints, e.g., manpower and equipment.
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APPENDII

This appendix lists the formulation of the problem as an ILP model, and supplies proofs and details

omitted in the main body of the paper.

ILP Formulation of Problem (P): Let tij be the time item j (j = 1,2,...,m) is transferred to Mi+,

(i = 1,2,...,n-1), and tn j is the time item j finishes processing on M.. Let Yij = 1 if tij coincides with

finishing the processing of item j on Mi, and yij = 0 if item j is held until at least one additional item

is processed. This leads to the following ILP formulation:

min tn,m

S.t.

tij > jTi + SU i ; for all i, j (Al)

tij > ti.ljik + (k+ 1)Ti Tri.1 i=2,3,...n, for all j, k = 0, 1,..., j-1 (A2)

tij - tij + 1 - mTiYij ; for all i, j =1,2 ...... m-1 (A3)

Ii- 1,-1CiTj - 1,mYij < B (A4)

yij" {0, 1}.

We have about nm3/3 constraints (predominantly (A2)'s), and most of them will be lax. (Al) takes care

of the setups. With k = 0, (A2) ensures that all items will be transferred from Mi. 1 prior to being

processed by Mi; and with k > 1, it ensures that item j will not be processed before items j-1, j-2, and

so on. (A3) is lax if yij 1, i.e., if a transfer follows the processing of item j on Mi immediately; if

Yij = 0, (A3) implies tij tij + 1, and due to the target function this will be satisfied as an equality.

Finally, (A4) is our budget constraint. Note that the number of constraints involved is polynomial, but

rather large, so the ILP approach may not be attractive in practice.

For a flow shop environment, it is straightforward to generalize this ILP model for several

consecutive jobs.

Theorem 2: If the feasibility conditions are satisfied, [(5)] ?- 1 AND [(5 )]Qk ' l > 1, then L1 = [(5)]; else,

if the feasibility conditions are satisfied, then The Adjustment Procedure yields an optimal solution.

Proof: We first show that (3) and (5) yield the best super-relaxed solution. If M. can start upon

receipt of L1 , the makespan is LI(T1 + T2 + ...+ Tn.1 ) + mTn; i.e., the time required for the first lot

to reach Mn plus the time required by Mn to finish the batch. By symmetry, if Mn is ready in time for

the last lot, the makespan is Lk(T 2 + T3 + ... + Tn) + mT 1. Clearly (3) and (5) ensure

LI(T + T2 + ... + Tn. 1) + mT n =L(T 2 + + ... + Tn) + mT 1. We proceed to prove by
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induction that any other lots are not optimal:

(a) Let k = 2. If L1 > Li, then the makespan is at least LI(T1 + T2 +...+ Tn.,) + mT >

LI(T 1 + T2 +...+ Tn.1 ) + mT n. Alternately, if L1 < Li, then L2 > L , and the makespan is at least

L2 (T2 + T3  ... + T) + mT1 > 4(T 2 + T3 + ... +T n ) + mT1.

(b) Let k > 3, and the induction assumption is that (3) and (5) are optimal for k-i lots. For k = 3,

we proved the induction assumption in (a). If LI > L1, then the proof in (a) holds here too, and the

makespan will be larger than for Li. If L1 < L1, then by the optimality criterion of Bellman, the best

we can do downstream is solve the k-i case for the remaining m-L1 items. This implies L. =

Ljr(m-L1)/(m-LI) > Lj ; for all j = 2, 3,..., k, i.e., Lk > L, and the proof in (a) holds again. (Note that

in the case for which we applied the optimality criterion of Bellman, M2 and the downstream machines

will have to idle between L1 and L2 .)

It remains to show that The Adjustment Procedure, which we use if [(5)] < 1 OR [(5 )]Qk 'i < 1

(i.e., the super-relaxed solution is not also the regular relaxed solution), preserves the optimality of the

solution. We concentrate on Part (a) of the procedure, Part (b) being symmetric. Mn cannot start before

time . so by feeding it at this time and making sure it can operate continuously until it finishes

the batch, the makespan will be minimized. Except for Step 4, this is the case here. As for Step 4, it

may force some of the last items to be transferred from M1 toward Mn one-by-one, as soon as they are

finished. In addition, if Step 4 reduces Lj.1 to increase L, then Lj. 1 will be released for trandsfer sooner

than scheduled before. All this cannot cause any delay relative to any feasible solution, so it preserves

the optimality. Finally, the stopping criterion that is incorporated in Step 4 is valid because the original

lots are non-increasing. son

Proofs Regarding Heuristics I and 2:

We now prove that Heuristic 1 yields a feasible solution that increases the relaxed makespan by

Max{ei)j.._ 1T-. First note that Sk = m, so it does not require rounding. Next, if some of the last lots

contain one unit each, as a result of Step 4 in The Adjustment Procedure, then the corresponding Si

values are integers as well, and do not require rounding either. Therefore, rounding any Si value up

cannot cause any subsequent lot to be less than 1. Hence, the lot sizes are feasible. Now, if we start

processing under this new scheme, Mn will have to wait ei T.1 4T for L, (relative to the relaxed

solution), or Max{ei}X2j. 1,,1T at most. This completes the proof.
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The proof that Heuristic 2 yields a feasible solution that increases the relaxed makespan by

Maxjfi}X1.2,nT- is by symmetry: rounding up for the original problem truncates the symmetric problem;

1,.,T assumes the role of . and f1 replaces ei. mom

Theorem 4: For any partition {p(o)=l, p(l), p(2), ..., p(r), p(r+l)=n} (feasible or not),

MMR1,n > Xio,MMRp(i)p(i+lY

Prof: Substituting from (1) and (7), we need to show that

1..i - Max .,,{Ti} >. X..Ori.p(.),p(,+,)Ti - O,rMaXi.p(.),P(.+,){Ti}. (AS)

There exists an index w (0 < w .<. r) such that Max,.l,n{Ti} = Maxj.p(.,,pw,+l){Ti}}. Therefore the right

hand side of (AS) can be written as

71i-ilTi + ,=l,rTp(S) - %=OrMaxi-p(s,p(,+){Tj} =

-ij,Ti + -=,,rTp(s) - ;O,w.Maxi.p(s),p(s+l){Ti} - -.,w+l, 4axi..,),,(.+){Ti} - Max.,,.{Ti}.

Subtract 2.jnTi - Max 1,={Ti} from both sides, and it remains to show

S.=.l,w-ITp(s+1) - .Xo,,,.Max .p(s),p(,+ ){Ti} + .w+,,,rTp(s) - 7.,,+ ,rMaxp(.),p(s+l){Tj} <__. 0.

But for any 1 < s < w-1, Tp(s+1) - Maxi=p(),P(,+,){Tij} 0, and similarly for any w+ 1 _ s < 1,

Tp(s) - Ma .- ,),p(.){Ti} < 0, and the theorem follows. won

Lemma 1: Let (i, j) be any pair such that i < p < j, and such that TP > Max{T i, Tj}, then (i, j) is an

infeasible pair.

Proof: Define SUM 1 = 7,.i+ 1,p.1Ts and SUM 2 = 7,=Pj.jTs, then

Qjp = (SUMI + Tp)/(SUM1 + Ti) and Qij = (SUM 1 + SUM2 + Tj)/(SUMI + SUM2 + Ti). We

proceed to check if (i, j) is a feasible pair, and clearly if so then we must have Qi j . Qip. After some

algebra we get Qij > Qip < = = = > Ti(SUM 1 + SUM2 + Tj) >. Tp(SUM1 + SUM 2 + Ti), but

Ti < Tp ===> Ti(SUM1 + SUM 2 ) < Tp(SUM 1 + SUM2 ), and Tj < Tp > TITj < TpTi.

Hence Qip > Qij' and (i, j) is infeasible. n mr

Theorem 5: Let MINPARTIT= {p(o)= 1, p(l), p(2), ..., p(r), p(r+ 1)=n}, then

MMR 1,n = pi-0,rMMRp(i),p(i
Proof: By observing the proof of Theorem 4, MMRI' n = -. OrMMRp(s)p(s+l) if and only if

Tp(i+l) = Max,-P ),pj, ){T) ; for all i = 0, 1, ..... w-1, AND Tp() = Max..pj),p0+1){Ts};

for all i = w+ 1, w+2, ..... r, where p(w) is the index of the slowest machine. Now, if the only partition

is at the slowest machine, the theorem is satisfied trivially. By Lemma 1 Mp(w) is part of the partition,

so any other machine in the partition must either precede it or follow it. We concentrate on the former,
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and look at Mp(i) for some 0 : i < w. We have to show Tp(i+l) Z Tp(-), and then by Lemma 1 we'll
have shown that Tp(i+ 1) = Max$'p0), ija){Ts} as required. If i+ 1 = w, then this is clearly true, so we

assume i < w-1. But by construction of the minimal partition we have Qp(i),p(i+l) > Qp(i),p(w) 1

(since Tp(w) >r ) = =PO) > Tn0+1) > rp(i))"

This completes the proof for 1 < i < w. As for w < i < r +1, this side follows by symmetry. au-

In order to prove Theorem 6, we need two additional lemmas, not listed in the main body of the

paper.

Lemma AI: Let 1 < p(s-1) < p(s) < j <!. n, where (p(s-1), p(s)) is a pair in MINPARTIT, then

Qp(s)j < Qp(s-1),(s)"
Proof: Let SUM 1 =Xi~_l)+,r)iTi, and SUM 2 = -k..s)+Ij.Ti, then the lemma states:

(SUM 2 + T)/(SUM2 + Tp(s)) < (SUM 1 + Tp(s))/(SUM +Tp(s.1)).

We proceed by negation, i.e., assume

(SUM 2 + Tj)/(SUM 2 + TP(s)) -L (SUM 1 + Tp(s))/(SUMl + Tp(s. 1)) = = =>

SUM 1 Tj + SUM 2 Tp(s.1) + TjTp(s.l) >. SUM1Tp(s) + SUM 2Tp(s) + (Tp(s)) 2 . (A6)

Now look at Qp(s-1)j " Qp(s-1),p(s)" By the definition of MINPARTIT, it must be strictly negative. That

is

(SUM 1 + T + SUM 2 + Tj)/(SUM1 + T + SUM 2 + T

(SUM 1 + Tp(s))/(SUM, + Tp(s.1)) < 0 = >

(SUM 1 + Tp(s) + SUM 2 + Tj)(SUM 1 + Tp(s 1 )) -

(SUM 1 + Tp(s) + SUM 2 + Tp(s.1 ))(SUM1 + Tp(s)) < 0.

By simple algebra, this reduces to

SUM1Tj + SUM2Tp(s-l) + TjTp(s.1) < SUMT p(s) + SUM2Tp(s) + (Tp(s))2,

thus directly contradicting (A6). nos

Corollary Al: Under MINPARTIT, the series {Qp(j),p(i ,, is monotone decreasing. man

Lemma A2: Under the conditions of Lemma Al, let p(s-1) < i < p(s), then Qi,p(s) > Qp(s)j"

Prof By Lemma Al, Qp(s)j < Qp(s-1),p(s)' so it suffices to show

Qi,p(s) >  Qp(s-l),(s)" (A7)

By the definition of MINPARTIT,
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Qp(s-1),i - Qp(s-1),p(s)" (AS)

Now look at the symmetric problem, and the symmetric MINPARTIT is the original MINPARTIT, though

listed in reversed order. This is true because feasibility of pairs is unaltered under symmetry, and

MINPARTIT is essentially the set of the largest possible feasible pairs. In the symmetric problem,

Qp(s-1),p(s) is replaced by 1/Qp(s.1),p(s) , which applies to the pair (p(s), p(s-1)). Therefore, by

symmetry to (A8) we obtain 1/Qip(s) < 1/Qp(s.1),p(s), which leads directly to (A7). un.

Theorem 6: Let PARTIT be any feasible partition which is not identical to MINPARTIT then MINPARTIT must

be properly contained in PARTIT.

Erof: Let MINPARTIT = {p(s)}O,r+i, and we use simple indices such as i, j for machines in PARTIT

which are not in MINPARTIT. First, let us show (by negation) that PARTIT cannot be properly contained

in MINPARTIT. Suppose 1 < s < r is the smallest index such that p(s) belongs to MINPARTIT but not to

PARTIT, and let p(t) such that s < t . r+ 1, be the smallest index of a machine which belongs to
MINPARTIT and to PARTIT (recall p(r+ 1) =n, and Mn is included in all partitions, therefore, such a t must

exist). By construction of MINPARTIT, Qp(s-),p(t) < Qp(s-1),p( s)' and hence (p(s-1), p(t)) is not a

feasible pair. This contradicts the assumption that PARTIT is feasible and contained in MINPARTIT.

Assume then that PARTIT includes at least one machine which does not belong to MINPARTIT. Pick

the machine with the smallest index, say i, which belongs to PARTIT but not to MINPARTIT, and clearly i

> 1 (since M1 = Mp(0 ) belongs to MINPARTIT); therefore there exists an index s such that 1 < s < r+ 1,

p(s-1) < i, and p(s) > i. Let p(k) be the index of the machine paired with i from below, i.e., the pair

(p(k), i) is in PARTIT.

We now show that p(s-1) is p(k). By construction of MINPARTIT, if p(k+ 1) . p(s-1) then

Qp(k),i < Qp(k),p(k+ 1) and thus (p(k), i) is an infeasible pair, contradicting the feasibility of PARTIT.

Hence p(s-1) must be in PARTIT. By symmetry, it is clear that if j is the last machine in

PARTIT - MINPARTIT, then all the machines with a larger index in MINPARTIT must also be in PARTIT. It

remains to show that no intermediate machines in MINPARTIT are strictly within feasible pairs of machines

in PARTIT (where each pair may include up to one machine which is also in MINPARTIT; we dealt with the

case where both of them are in MINPARTIT above by showing that PARTIT cannot be properly contained

in MINPARTIT). Now, if any other index, say i', exists in PARTIT such that i < i' < p(s), take the largest

such i', and rename it as i. Hence, i is now the largest index of a machine in PARTIT - MINPARTIT such
that p(s-l) < i < p(s). Also, we know that p(s-1) is in PARTIT. We proceed to prove that p(s) must be

in PARTIT as well. To that end it suffices to show that Qip(s) = Maxj>p(s){Qij) (i.e., no feasible pair
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exists with p(s) strictly within it). This result is assured by Lemma A2. Now, look for the next machine

in PART - MINPARTIT which can again be called j. We just proved that the machine in MINPARTIT

nearest to i from above must be in PARTIT. By symmetry, the nearest machine in MINPARTIT to j from

below must be in PARTrr also, and it follows that any machines in MINPARTIT between those two are also

in. Now, rename j as i and repeat the whole procedure until no machines are found in

PARTIT- MINPARTIT. Nm

Lemma 2: Let (i, j) be a pair such that Tk < min{T, T.} ; for all i < k < j, then (i, j) is a feasible pair.

PEMQf: Let SUM = X=i+llk.Ts and assume QiJ > 1, then

Qi,k = (SUM + Tk)/(SUM + Ti) < 1 (since Tk < Ti). = ==> Qi,k <. Qij; for all k, and the lemma

is satisfied. If Qij < 1, the proof is by symmetry. nos

7heorem 7: The series {MRiJ(k)}k=,3,..., is monotone decreasing.

Proof: For convenience, we use Q for Qij where there is no risk of confusion. MRid(k) is simply the

difference between L1 for k-1 and for k transfers multiplied by ,=.ij_ 1Ts. Assuming Kid > k > 2 we

obtain:

MRij(k)/X._ij.1T s = L 1 1k-I transfers - L1 1k transfers =

m/(1+Q+Q 2 +...+Qk'2) - m/(1+Q+Q 2 +...+Qk 'l) =

mQk.l/[(+Q+Q2+...+Qk- 2)(+Q+Q2 +...+Qk-1 )j. (A9)

MRij(Kij) is bounded from above by the value indicated for it by (A9), so it is enough to show that (A9)

leads to a monotone decreasing series. Assume now that Q < 1. Under this assumption the numerator

in (A9) is monotone non-increasing and the denominator is monotone increasing with k. Hence,

MRij(k) < MRid(k-1) as required. The proof for Q > 1 follows by symmetry, since in the symmetric

problem Q < 1, but the series {MRid(k) is identical. ns.

Note that (8) can be developed directly from (A9) by using the geometric sum formula where

applicable.

Theorem 8: MRij(21) > MMRij/2.

f- Assume Ti > Ti== > Q = Qij = k-I+ljTk/"k=ij.ITk < I and MMRij= (m - 1) .,Tk ,

By (8), MRij( 2 ) = m(1 1/(1 + Q))Xk.,j.lTk. Since Q <_ 1,

2MRij(2 ) mklij.1T k  rn-k-i+,j > (M ( ).k-i+1jT k = MMRij.

By symmetry, the same result holds if Ti < T.. man
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Partitioning the Problem by Dynamic Programming

Let:

* FB = B - Ci, be the total free budget after accounting for the essential transfers (i.e., one transfer

for each pair (i, i+ 1)).

* F = the free budget remaining for allocation at any stage; e.g., at the first stage, F = FB.

* TGi(F, j, k) = the total makespan reduction from Mi and downstream if we indicate k transfer

lots from Mi to M T and use the rest of the free budget from M. and downstream optimally. (In

this definition and the following ones we assume (i, j) is a feasible pair.)

0 TG!(F) = the total makespan reduction possible from M. and downstream if we have a free

budget of F at Mj.

* TRid(k) = the total makespan reduction accumulated for pair (i, j) using k transfers between i and

j, then,

TRij(1) = 0 (the first transfer is essential),

TRij(k) = TRij(k-1) + MRij(k) ; 2 < k < Kij,

TRij(Kij) = MMRij.

* LABELli(F) = the number of transfers required from Mi when the free budget remaining there

is F, to achieve the optimal makespan reduction indicated by TG*(F).

* LABEL2i(F) = the index of the machine paired directly to Mi when we have a free budget of F

there, to realize the optimal makespan reduction indicated by TG*(F) from Mi and downstream.

We are now ready to state our recursion formulae. First we have

TGnI(F) = TRn. 1,n(Min{INT(F/Cn.i) , Knl,nd). (AI0)

Next, for stage i, assume we have TG*(F) from the former recursions for all j > i (for i = n-2 we

have (A10)), then for any j such that (i, j) is a feasible pair we have

TGi(F, j, 1) = TG*(F) ; for all 0 < F < FB,

TGi(F, j, k) = TRij(k) + TG;(F - (k - 1)Z,j.Cs) ; any F, 2<k<Kij,

TGj(F) = Maxjk{TGi(F, j, k)}.
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And thus we can compute all the TG!(F) values, including TGC(FB). Finally, to trace the optimal

allocation from Mi and downstream, we compute the LABELli(F) and LABEI2 1(F) values during the

recursion by

(LABELli(F), LABEL2i(F))=args{TGi(F, LABELlI(F), LABEL2i(F)) = TG*(F)}.

The Complexity of the DP Partitioning Algorithm

.ssume we use tables where the row k corresponds to utilizing k transfers in the next stage, and each

column corresponds to a free budget value. Therefore each table has O(F)O(max # of transfers) entries.

There are at most n(n-1)/2 feasible pairs (at least n-1, but this is not important for the worst case

analysis), which can be identified in O(n3 ). Thus we have to build O(n 2) tables, each based on up to n-

1 possible routes to feasible downstream pair-mate machines. This leads us to O(n3 )0(F)O(max # of

transfers). Generally O(F) depends on the budget, but cannot exceed O(m). As for the max # of

transfers, if Qij is likely to be 1, we have to consider up to in transfers, leading to O(n i2). If Qij is
not likely to be 1 more than a bounded number of times which is not dependent on m, than by (11) and

(12) we know that Kij is O(log m), leading to O(n3mlog in).

Note that by using Theorem 6, we can save a lot of effort when looking for all possible feasible

pairs that include Mi . The theorem allows us to confine such searches to the subset to which i belongs

in MINPARTIT. Furthermore, we can partition the problem to the parts implied by MINPARTIT, and use

a similar master program to assign the budget to the parts. The advantage is realized if FB is larger than

the budget which can be utilized in some single parts. For instance, if MP(s) and Mp(s+ 1) belong to

MINPARTIT, the optimal solution cannot specify spending more in this part than the cost of KP(s),p(s + 1)

compound transfers, which may be significantly less than FB. Assigning the budget to the parts can be

solved as a simple instance of the dynamic programming knapsack model (e.g., see [4]). In fact our

algorithm above is a direct extension of this classic model.
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Calculating L..aMd Yj ,k for the second onerating procedure

We now discuss in more detail how to calculate L, and Yijk We follow the schematic outline of Section

7 step by step. We repeat the outline below, for convenience.

(1) At stage i, given L! and Ypj,k for p < i and all j, k, calculate Yijk for all j, k; if i = K, go to (3);

else, set i = i + 1 and go to (2);

(2) Given L and pJk for p < i and all j, k, calculate L! and return to (1)

(3) For i = 1 to K let L = mL!/.JL

Step 1: By (13) and (14) we know exactly when L! starts on M1 (ST 1,1), and when its first sub-lot is due

at Mn (STi,n). Then the problem of finding the values for Yij k can be solved by applying the super-

relaxed solution of the two machines model recursively. That is, if parent lot i is sub-divided to k sub-

lots when processed by M., we use (5) and (3) with Q = Tj + 1/T. and m = 1 (since the Y values sum

to 1, rather than to m). This policy, if feasible, is optimal when the number of sub-lots for each machine

is given. The optimality follows directly from the optimality of the two machines model solution. Any

other choice of the Yij,k values will lead to unnecessary delays.

Step 2: Observing the solution for the Y values as discussed in the preceding paragraph, we note that

they are invariant with L!. In contrast, the time elapsed between STi, 1 and the instant the first sub-lot

of Li can reach Mn is a function of 1 , namely Li2k. 1,nJ(Yi,l,kTk). Since we have STi,n , we know the

time alloted for this purpose, which is [(14)] - [(13)]. On the one hand, if the value we get by the

tentative L, is less than the alloted time, then we could have processed more items for the same transfer

costs. Hence, L, should be larger. On the other hana, by Theorem I we know that Mn does not have

to wait. Hence Li must be exactly large enough to use up all the time alloted to it by ((14)] - [(13)].

That is

Li = (STi, n - STi,I)/4R=1,n-(Yil,kTk).

Step 3: At the end of Step 2, we have the optimal solution for a batch of .Lt items. Step 3 simply
p

adjusts all the L! values so that their sum will be m.
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